THE REACTION OF 2,3-DIAMINO-BUTADIENES WITH 1,2-DIIMMONIUM DIBROMIDES: A DIRECT SYNTHESIS OF 1,2,4-TRIAMINO BENZENES

Sergio Baroni, Elisabetta Rivera, Riccardo Stradi (*)
Istituto di Chimica Organica della Facoltà di Farmacia,
Università di Milano, Viale Abruzzi 42, 20131 Milano,
Italy

Maria Luisa Saccarello

Medea Researches, Via Pisacane 34/A, 20129 Milano, Italy

Summary. A new benzene ring synthesis is reported: 1,2-diimmonium dibromides react in mild conditions with 2,3-diamino-butadienes affording 1,2,4-triamino benzenes with yields of preparative interest.

The diimmonium dibromides $\underline{1}$, which are easy to prepare from 1,2-diamino-ethenes $\underline{2}$ by addition of bromine (1) or, more practically, by reaction of 1,1,2,2-tetraaminoethanes $\underline{3}$ with acetyl bromide (2), have proven to be useful intermediates for the preparation of some nitrogen-containing five-membered ring heterocycles such imidazoles (3), indoles (4) and pyrroles (5).

We now wish to report that these salts react with 2,3-diamino-butadienes (6) 4 yielding 1,2,4-triamino-benzenes 5 (40-70%). The reaction was carried out in dichloromethane at a temperature ranging between -30°C and -15°C and in the presence of a bimolecular amount of triethylamine.

 $\underline{1b} : X = CH_2 \qquad \underline{4b} : X = CH_2$

 $\underline{1c} : X = NCH_{\underline{3}}$

The products were isolated by standard procedures and their structure was assigned on the basis of analytical (C,H,N) and spectral data (IR, ¹H n.m.r. and mass spectrometry). In the table are summarized the amino-benzenes synthesized in the preliminary study.

The reaction probably proceeds <u>via</u> an unstable tetraamino-dihydrobenzene $\underline{6}$ which is the product of a double electrophilic attack of $\underline{1}$ upon the electronrich carbon atoms of enamine $\underline{4}$.

Compound	x	Y	Yield ^{a)}	m.p. (°C) ^{b)}
5a	0	0	50	126 (lit ⁷ 1 3 0)
5b	CH	0	55	123-124
5c	N-CH ₃	0	70	132
5 a	0	CH2	58	129-130
5e	CH ₂	CH	46	105
5 f	N-CH ₃	CH ²	62	95

a) Of analytically pure compounds and based on enamine 3.

At present, further work is in progress to explore the extension of the reaction to other electron-rich conjugated dienes.

REFERENCES AND NOTES

- (1) L. Duhamel, P. Duhamel, G. Plé, Bull.Soc.Chim.Fr., 1971, 4169.
- (2) H. Böhme, G. Auterhoff, W. Hover, Chem. Ber., 104, 3350 (1971).
- (3) L. Citerio, M.L. Saccarello, R. Stradi, Synthesis, 1979, 594.
- (4) M.L. Saccarello, R. Stradi, Synthesis, 1979, 729.
- (5) Results to be published.
- (6) 2,3-Diamino-butadienes <u>4a</u> (b.p. 100-105/0.5 torr, m.p. 88°C) and <u>4b</u> (b.p. 95-100/0.5 torr) were prepared by the method of H. Weingarten (8).
- (7) P. Caubère, L. Lalloz, Bull.Soc.Chim.Fr., 1974, 1996.
- (8) W.A. White, H. Weingarten, J.Org. Chem., 1967, 213.

(Received in UK 10 December 1979)

b) All products were recrystallized from diisopropylether.